Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

tert-Butyl N-\{2-[N-(N, N^{\prime}-dicyclohexyl-ureidocarbonylethyl)carbamoyl]-prop-2-yl\}carbamate

Rahul Banerjee, ${ }^{\text {a }}$ Samir Kumar Majib ${ }^{\text {b }}$ and Arindam Banerjee ${ }^{\text {b }}$ *

${ }^{\text {a }}$ Saha Institute of Nuclear Physics, Crystallography and Molecular Biology Division, Sector 1, Block 'AF', Bidhan Nagar, Calcutta 700 064, India, and ${ }^{\mathbf{b}}$ Indian Association for the Cultivation of Science, Department of Biological Chemistry, Jadavpur, Calcutta 700 032, India
Correspondence e-mail: bcab@mahendra.iacs.res.in

Received 7 February 2000
Accepted 18 May 2000
The title compound, $\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}$, exhibits a turn with the main chain reversing direction, held together by an intramolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bond. In the urea fragment, a notable amide $\mathrm{C}-\mathrm{N}$ bond between the carboxyl C and the tertiary N atom shows marked single-bond character [1.437 (2) Å]. The dihedral angle of the β-alanyl residue, centrally located in the turn, is gauche [69.2 (2) ${ }^{\circ}$]. The packing is mediated by two intermolecular hydrogen bonds and van der Waals contacts involving the methyl moieties and the cyclohexyl rings.

Comment

Naturally occurring proteins and synthetic peptides frequently exhibit β-bend or turn conformations. The reverse turn, wherein the directionality of the polypeptide suffers a change,

(I)
has been known to play an important role in protein folding (Ptitsyn, 1981). It is well documented that the α-amino isobutyryl (Aib) residue has a high propensity for regular secondary structures such as α-helices or β-bends in designed synthetic oligopeptides (Prasad \& Balaram, 1984; Karle et al., 1986). The target compound, (I), was synthesized to investigate the conformation of the turn on the incorporation of an extra C atom (β-alanyl) into the main chain.

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids (Burnett \& Johnson, 1996). H atoms are shown as spheres of arbitrary radii.

The $\mathrm{C}-\mathrm{O}$ and $\mathrm{C}-\mathrm{N}$ bonds adjacent to the carbonyl O atoms (O21, O41, O71, O81) show partial double-bond character due to resonance with the bond lengths ranging from 1.334 (2)-1.368 (2) \AA. It is important to note that the C8-N3 amide bond [1.437 (2) Å] exhibits marked single-bond character. The overall conformation of the molecule is that of a turn held together by a strong $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}=\mathrm{C}$ hydrogen bond between N4 and O21 located at the extremities. The molecule thus forms a 13-membered ring motif (Venkatachalam, 1968; Nataraj et al., 1995). The O21 atom also forms van der Waals contacts with N2 [3.147 (2) Å], coming in close proximity to C96 [3.615 (3) \AA] , an atom on the cyclohexyl ring. There is an additional contact between O 41 and C92 of 3.588 (3) \AA.

The conformation of the molecule is thus decided by free torsional rotations about $\mathrm{N} 1-\mathrm{C} 3, \mathrm{C} 3-\mathrm{C} 4, \mathrm{~N} 2-\mathrm{C} 5, \mathrm{C} 5-\mathrm{C} 6$, $\mathrm{C} 6-\mathrm{C} 7$ and $\mathrm{N} 3-\mathrm{C} 8$. Of these, the torsion angles $\mathrm{N} 1-\mathrm{C} 3-$ $\mathrm{C} 4-\mathrm{N} 2 \quad\left[39.0(2)^{\circ}\right]$ and $\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 3 \quad\left[-155.6(2)^{\circ}\right]$ exhibit significant deviations from either the gauche or trans conformations, the rest being (- gauche. In particular, the torsion angle $\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$, the $\mathrm{C}-\alpha-\mathrm{C}-\beta$ bond of the β alanyl residue, is 69.2 (2). This is important as the two atoms are centrally located in the turn, the reversal of direction in the chain being effected between atoms C 3 and C 8 . Out of the four carbonyl bonds $\mathrm{C} 2-\mathrm{N} 1, \mathrm{C} 4-\mathrm{N} 2, \mathrm{C} 7-\mathrm{N} 3$ and $\mathrm{C} 8-\mathrm{N} 4$, it is only in the case of $\mathrm{C} 6-\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 8\left[6.9(2)^{\circ}\right]$ that the flanking C atoms, C 6 and C 8 , are in the cis configuration, the rest being trans. There is close correspondence in the torsion angles up to $\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$ from the Boc terminal end between this molecule and t-Boc-Aib-Aib- β-Ala-NHMe (Pavone et al., 1992).

The crystal packing is mediated by the two intermolecular hydrogen bonds $\mathrm{N} 1-\mathrm{HN} 1 \cdots \mathrm{O} 81$ and $\mathrm{N} 2-\mathrm{HN} 2 \cdots \mathrm{O} 71$. In addition, there are packing interactions involving the apolar atoms of the cyclohexyl ring, the methyl groups bonded to C 1 (C11, C12, C13) and C3 (C31, C32), and atoms C5 and C6.

Experimental

t-Boc-Aib-OH was coupled to β-Ala-OMe in dichloromethane using dicyclohexylcarbodiimide (DCC)/1-hydroxybenztriazole at $273-277 \mathrm{~K}$ for an hour. The resulting dipeptide, Boc-Aib- β-AlaOMe, was hydrolysed using methanol/sodium hydroxide (1 N) at room temperature to obtain the dipeptide acid Boc-Aib- β - $\mathrm{Ala}-\mathrm{OH}$, which was then treated with DCC in N, N-dimethylformamide to give the final compound. Crystals were obtained by slow evaporation from a water/methanol mixture.

Crystal data

$\mathrm{C}_{25} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{5}$
$M_{r}=480.64$
Triclinic, $P \overline{1}$
$a=9.9960(10) \AA$
$b=10.933(2) \AA$
$c=14.385(3) \AA$
$\alpha=78.13(2)^{\circ}$
$\beta=83.740(10)^{\circ}$
$\gamma=65.590(10)^{\circ}$
$V=1400.4(4) \AA^{\circ}$
$Z=2$
$D_{x}=1.140 \mathrm{Mg} \mathrm{m}^{-3}$

$$
\begin{aligned}
& D_{m}=1.14 \mathrm{Mg} \mathrm{~m}^{-3} \\
& D_{m} \text { measured by flotation in } \\
& \quad \text { xylene/bromoform } \\
& \text { Cu } \mathrm{K} \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=10-30^{\circ} \\
& \mu=0.64 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.88 \times 0.63 \times 0.50 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD-4 four-circle
automatic diffractometer
2ω scans
5941 measured reflections
5622 independent reflections
4579 reflections with $F_{o}>4 \sigma\left(F_{o}\right)$
$R_{\text {int }}=0.042$
$\theta_{\text {max }}=74.68^{\circ}$

$$
\begin{aligned}
& h=0 \rightarrow 12 \\
& k=-12 \rightarrow 13 \\
& l=-15 \rightarrow 17
\end{aligned}
$$

3 standard reflections every 60 reflections frequency: 60 min intensity decay: none

Table 1
Selected geometric parameters ($\left(\AA{ }^{\circ}\right)$.

$\mathrm{O} 21-\mathrm{C} 2$	$1.217(2)$	$\mathrm{O} 41-\mathrm{C} 4$	$1.222(2)$
$\mathrm{N} 3-\mathrm{C} 7$	$1.368(2)$	$\mathrm{N} 4-\mathrm{C} 8$	$1.334(2)$
$\mathrm{N} 3-\mathrm{C} 8$	$1.437(2)$	$\mathrm{N} 4-\mathrm{C} 91$	$1.461(2)$
$\mathrm{N} 3-\mathrm{C} 81$	$1.480(2)$	$\mathrm{N} 2-\mathrm{C} 4$	$1.339(2)$
$\mathrm{O} 81-\mathrm{C} 8$	$1.212(2)$	$\mathrm{N} 2-\mathrm{C} 5$	$1.441(2)$
$\mathrm{O} 1-\mathrm{C} 2$	$1.343(2)$	$\mathrm{O} 71-\mathrm{C} 7$	$1.222(2)$
$\mathrm{O} 1-\mathrm{C} 1$	$1.461(2)$	$\mathrm{C} 4-\mathrm{C} 3$	$1.540(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.345(2)$	$\mathrm{C} 7-\mathrm{C} 6$	$1.502(2)$
$\mathrm{N} 1-\mathrm{C} 3$	$1.461(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.513(2)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 8$			$113.6(1)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 81$	$122.6(1)$	$\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 3$	$116.3(1)$
$\mathrm{C} 2-\mathrm{O} 1-\mathrm{C} 1$	$117.9(1)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$110.7(1)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 3$	$120.9(1)$	$\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4$	$118.3(1)$
$\mathrm{C} 8-\mathrm{N} 4-\mathrm{C} 91$	$120.8(1)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$	$112.6(1)$
$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5$	$122.6(1)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$113.3(2)$
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 1$	$121.6(2)$	$\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	
	$110.9(1)$		
C81-N3-C7-C6	$-161.9(1)$	$\mathrm{C} 91-\mathrm{N} 4-\mathrm{C} 8-\mathrm{N} 3$	$-172.7(2)$
$\mathrm{C} 8-\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6$	$6.9(2)$	$\mathrm{C} 4-\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6$	$72.9(2)$
$\mathrm{C} 7-\mathrm{N} 3-\mathrm{C} 8-\mathrm{N} 4$	$71.2(2)$	$\mathrm{C} 5-\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3$	$177.2(2)$
$\mathrm{C} 81-\mathrm{N} 3-\mathrm{C} 8-\mathrm{N} 4$	$-120.1(2)$	$\mathrm{N} 2-\mathrm{C} 4-\mathrm{C} 3-\mathrm{N} 1$	$39.0(2)$
C1-O1-C2-N1	$-179.3(0.13)$	$\mathrm{N} 3-\mathrm{C} 7-\mathrm{C} 6-\mathrm{C} 5$	$-155.6(2)$
C3-N1-C2-O1	$169.1(1)$	$\mathrm{N} 2-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7$	$69.2(2)$
C2-N1-C3-C4	$58.7(2)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N4-HN4 \cdots O21	$0.90(2)$	$2.07(2)$	$2.964(2)$	$173(2)$
N1-HN1 \cdots O81	$0.87(2)$	$2.20(2)$	$3.036(2)$	$161(2)$
N2-HN2 \cdots O71				

Symmetry codes: (i) $1+x, y, z$; (ii) $2-x,-y,-z$.

Refinement

Refinement on F^{2}

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0780 P)^{2}\right. \\
& \quad+0.1745 P] \\
& \quad \text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.013 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.21 \mathrm{e}^{-3} \AA^{-3} \\
& \text { Extinction correction: SHELXL97 } \\
& \quad \text { (Sheldrick, 1997) } \\
& \text { Extinction coefficient: } 0.0110(8)
\end{aligned}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.046$
$w R\left(F^{2}\right)=0.139$
$S=1.060$
5622 reflections
475 parameters
H atoms treated by a mixture of independent and constrained refinement

All the H atoms in the structure were located from difference Fourier maps [$\mathrm{N}-\mathrm{H} 0.874$ (19)-0.904 (18) \AA and $\mathrm{C}-\mathrm{H} 0.91$ (3)1.05 (3) Å], except for those bonded to C12 which were geometrically fixed ($\mathrm{C}-\mathrm{H} 0.96 \AA$). Absorption corrections were not applied as the $T_{\max } / T_{\min }$ ratio was 1.11 , marginally greater than 1.10.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett \& Johnson, 1996).

The Department of Science \& Technology, together with the National Diffractometer Facility at the All India Institute of Medical Sciences, New Delhi, are acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1142). Services for accessing these data are described at the back of the journal.

References

Burnett, M. \& Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
Enraf-Nonius (1994). CAD-4 Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands.
Karle, I. L., Sukumar, M. \& Balaram, P. (1986). Proc. Natl Acad. Sci. USA, 83, 9284-9288.
Nataraj, D. V., Srinivasan, N., Sowdhamini, R. \& Ramakrishnan, C. (1995). Curr. Sci. 69, 434.
Pavone, V., Di Blasio, B., Lombardi, A., Isernia, C., Pedone, C., Benedetti, E., Valle, G., Crisma, M., Toniolo, C. \& Kishore, R. (1992). J. Chem. Soc. Perkin Trans. 2, 1233-1237.
Prasad, B. V. V. \& Balaram, P. (1984). CRC Crit. Rev. Biochem. 16, 307-347. Ptitsyn, O. B. (1981). FEBS Lett. 131, 197-202.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Venkatachalam, C. M. (1968). Biopolymers, 6, 1425.

