organic compounds

Acta Crystallographica Section C **Crystal Structure** Communications ISSN 0108-2701

tert-Butyl N-{2-[N-(N,N'-dicyclohexylureidocarbonylethyl)carbamoyl]prop-2-yl}carbamate

Rahul Banerjee,^a Samir Kumar Maji^b and Arindam Banerjee^b*

^aSaha Institute of Nuclear Physics, Crystallography and Molecular Biology Division, Sector 1, Block 'AF', Bidhan Nagar, Calcutta 700 064, India, and ^bIndian Association for the Cultivation of Science, Department of Biological Chemistry, Jadavpur, Calcutta 700 032, India

Correspondence e-mail: bcab@mahendra.iacs.res.in

Received 7 February 2000 Accepted 18 May 2000

The title compound, C₂₅H₄₄N₄O₅, exhibits a turn with the main chain reversing direction, held together by an intramolecular N-H···O hydrogen bond. In the urea fragment, a notable amide C-N bond between the carboxyl C and the tertiary N atom shows marked single-bond character [1.437 (2) Å]. The dihedral angle of the β -alanyl residue, centrally located in the turn, is gauche [69.2 (2) $^{\circ}$]. The packing is mediated by two intermolecular hydrogen bonds and van der Waals contacts involving the methyl moieties and the cyclohexyl rings.

Comment

Naturally occurring proteins and synthetic peptides frequently exhibit β -bend or turn conformations. The reverse turn, wherein the directionality of the polypeptide suffers a change,

has been known to play an important role in protein folding (Ptitsyn, 1981). It is well documented that the α -amino isobutyryl (Aib) residue has a high propensity for regular secondary structures such as α -helices or β -bends in designed synthetic oligopeptides (Prasad & Balaram, 1984; Karle et al., 1986). The target compound, (I), was synthesized to investigate the conformation of the turn on the incorporation of an extra C atom (β -alanyl) into the main chain.

The molecular structure of (I) showing 50% probability displacement ellipsoids (Burnett & Johnson, 1996). H atoms are shown as spheres of arbitrary radii.

The C-O and C-N bonds adjacent to the carbonyl O atoms (O21, O41, O71, O81) show partial double-bond character due to resonance with the bond lengths ranging from 1.334(2)-1.368(2) Å. It is important to note that the C8–N3 amide bond [1.437 (2) Å] exhibits marked single-bond character. The overall conformation of the molecule is that of a turn held together by a strong $N-H \cdots O = C$ hydrogen bond between N4 and O21 located at the extremities. The molecule thus forms a 13-membered ring motif (Venkatachalam, 1968; Nataraj et al., 1995). The O21 atom also forms van der Waals contacts with N2 [3.147 (2) Å], coming in close proximity to C96 [3.615 (3) Å], an atom on the cyclohexyl ring. There is an additional contact between O41 and C92 of 3.588 (3) Å.

The conformation of the molecule is thus decided by free torsional rotations about N1-C3, C3-C4, N2-C5, C5-C6, C6-C7 and N3-C8. Of these, the torsion angles N1-C3-C4-N2 [39.0 (2)°] and C5-C6-C7-N3 [-155.6 (2)°] exhibit significant deviations from either the gauche or trans conformations, the rest being (-) gauche. In particular, the torsion angle N2–C5–C6–C7, the C- α –C- β bond of the β alanyl residue, is 69.2 (2). This is important as the two atoms are centrally located in the turn, the reversal of direction in the chain being effected between atoms C3 and C8. Out of the four carbonyl bonds C2-N1, C4-N2, C7-N3 and C8-N4, it is only in the case of C6-C7-N3-C8 [6.9 (2)°] that the flanking C atoms, C6 and C8, are in the cis configuration, the rest being trans. There is close correspondence in the torsion angles up to C4-N2-C5-C6 from the Boc terminal end between this molecule and t-Boc-Aib-Aib-β-Ala-NHMe (Pavone et al., 1992).

The crystal packing is mediated by the two intermolecular hydrogen bonds N1-HN1···O81 and N2-HN2···O71. In addition, there are packing interactions involving the apolar atoms of the cyclohexyl ring, the methyl groups bonded to C1 (C11, C12, C13) and C3 (C31, C32), and atoms C5 and C6.

Experimental

t-Boc-Aib-OH was coupled to β -Ala-OMe in dichloromethane using dicyclohexylcarbodiimide (DCC)/1-hydroxybenztriazole at 273–277 K for an hour. The resulting dipeptide, Boc–Aib– β -Ala– OMe, was hydrolysed using methanol/sodium hydroxide (1 N) at room temperature to obtain the dipeptide acid Boc-Aib- β -Ala-OH, which was then treated with DCC in N,N-dimethylformamide to give the final compound. Crystals were obtained by slow evaporation from a water/methanol mixture.

Crystal data

$C_{25}H_{44}N_4O_5$	$D_m = 1.14 \text{ Mg m}^{-3}$
$M_r = 480.64$	D_m measured by flotation in
Triclinic, P1	xylene/bromoform
a = 9.9960 (10) Å	Cu Ka radiation
b = 10.933 (2) Å	Cell parameters from 25
c = 14.385(3) Å	reflections
$\alpha = 78.13 \ (2)^{\circ}$	$\theta = 10{-}30^{\circ}$
$\beta = 83.740 (10)^{\circ}$	$\mu = 0.641 \text{ mm}^{-1}$
$\gamma = 65.590 \ (10)^{\circ}$	T = 293 (2) K
V = 1400.4 (4) Å ³	Plate, colourless
Z = 2	$0.88 \times 0.63 \times 0.50 \text{ mm}$
$D_x = 1.140 \text{ Mg m}^{-3}$	

Data collection

Enraf–Nonius CAD-4 four–circle	$h = 0 \rightarrow 12$
automatic diffractometer	$k = -12 \rightarrow 13$
2ω scans	$l = -15 \rightarrow 17$
5941 measured reflections	3 standard reflections
5622 independent reflections	every 60 reflections
4579 reflections with $F_o > 4\sigma(F_o)$	frequency: 60 min
$R_{\rm int} = 0.042$	intensity decay: none
$\theta_{\rm max} = 74.68^{\circ}$	

Table 1

Selected geometric parameters (Å, °).

O21-C2 N3-C7 N3-C8 N3-C8 O81-C8	1.217 (2) 1.368 (2) 1.437 (2) 1.480 (2) 1.212 (2)	O41-C4 N4-C8 N4-C91 N2-C4 N2-C5	1.222 (2) 1.334 (2) 1.461 (2) 1.339 (2) 1.441 (2)
O1 - C2	1.343 (2)	071 - C7	1.222(2)
N1-C2 N1 C2	1.401(2) 1.345(2) 1.461(2)	C4 - C3 C7 - C6 C5 - C6	1.540(2) 1.502(2) 1.513(2)
NI-C5	1.401 (2)	05-00	1.515 (2)
$\begin{array}{c} C7-N3-C8\\ C7-N3-C81\\ C2-O1-C1\\ C2-N1-C3\\ C8-N4-C91\\ C4-N2-C5\\ O1-C2-N1 \end{array}$	122.6 (1) 117.9 (1) 120.9 (1) 120.8 (1) 122.6 (1) 121.6 (2) 110.9 (1)	$\begin{array}{c} N4-C8-N3\\ N2-C4-C3\\ N1-C3-C4\\ N3-C7-C6\\ N2-C5-C6\\ C7-C6-C5\\ \end{array}$	113.6 (1) 116.3 (1) 110.7 (1) 118.3 (1) 112.6 (1) 113.3 (2)
C81-N3-C7-C6 C8-N3-C7-C6 C7-N3-C8-N4 C81-N3-C8-N4 C1-O1-C2-N1 C3-N1-C2-O1 C2-N1-C3-C4	-161.9 (1) 6.9 (2) 71.2 (2) -120.1 (2) -179.3 (0.13) 169.1 (1) 58.7 (2)	$\begin{array}{c} C91-N4-C8-N3\\ C4-N2-C5-C6\\ C5-N2-C4-C3\\ N2-C4-C3-N1\\ N3-C7-C6-C5\\ N2-C5-C6-C7\\ \end{array}$	-172.7 (2) 72.9 (2) 177.2 (2) 39.0 (2) -155.6 (2) 69.2 (2)

Table 2

Hydrogen-bonding geometry (Å, °).

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$\begin{array}{l} N4 - HN4 \cdots O21 \\ N1 - HN1 \cdots O81^{i} \\ N2 - HN2 \cdots O71^{ii} \end{array}$	0.90 (2)	2.07 (2)	2.964 (2)	173 (2)
	0.87 (2)	2.20 (2)	3.036 (2)	161 (2)
	0.88 (2)	2.17 (2)	2.906 (2)	142 (2)

Symmetry codes: (i) 1 + x, y, z; (ii) 2 - x, -y, -z.

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.046$ $wR(F^2) = 0.139$ S = 1.060 5622 reflections 475 parameters H atoms treated by a mixture of independent and constrained	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0780P)^{2} + 0.1745P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$ $(\Delta/\sigma)_{max} = 0.013$ $\Delta\rho_{max} = 0.17 \text{ e} \text{ Å}^{-3}$ $\Delta\rho_{min} = -0.21 \text{ e} \text{ Å}^{-3}$ Extinction correction: SHELXL97 (Sheldrick, 1997)
independent and constrained	(Sheldrick, 1997)
refinement	Extinction coefficient: 0.0110 (8)

All the H atoms in the structure were located from difference Fourier maps [N-H 0.874 (19)-0.904 (18) Å and C-H 0.91 (3)-1.05 (3) Å], except for those bonded to C12 which were geometrically fixed (C-H 0.96 Å). Absorption corrections were not applied as the $T_{\text{max}}/T_{\text{min}}$ ratio was 1.11, marginally greater than 1.10.

Data collection: CAD-4 Software (Enraf-Nonius, 1994); cell refinement: CAD-4 Software; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996).

The Department of Science & Technology, together with the National Diffractometer Facility at the All India Institute of Medical Sciences, New Delhi, are acknowledged.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: DE1142). Services for accessing these data are described at the back of the journal.

References

- Burnett, M. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Enraf-Nonius (1994). CAD-4 Software. Version 5.1. Enraf-Nonius, Delft, The Netherlands
- Karle, I. L., Sukumar, M. & Balaram, P. (1986). Proc. Natl Acad. Sci. USA, 83, 9284-9288.
- Nataraj, D. V., Srinivasan, N., Sowdhamini, R. & Ramakrishnan, C. (1995). Curr. Sci. 69, 434.
- Pavone, V., Di Blasio, B., Lombardi, A., Isernia, C., Pedone, C., Benedetti, E., Valle, G., Crisma, M., Toniolo, C. & Kishore, R. (1992). J. Chem. Soc. Perkin Trans. 2. 1233-1237.

Prasad, B. V. V. & Balaram, P. (1984). CRC Crit. Rev. Biochem. 16, 307-347. Ptitsyn, O. B. (1981). FEBS Lett. 131, 197-202.

- Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany. Venkatachalam, C. M. (1968). Biopolymers, 6, 1425.